B 41

T/CVDA

团体标准

T/CVDA 3-2024

动物全自动核酸检测系统

Automatic nucleic acid analysis system for veterinary purposes

2024-08-27 发布

2024-09-01 实施

前言

本文件按照 GB/T1.1-2020《标准化工作导则 第 1 部分:标准化文件的结构和起草规则》的规定起草。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别专利的责任。

本文件由中国兽药协会提出并归口。

本文件起草单位:上海基灵生物科技有限公司、中国农业科学研究院上海兽医研究所、上海市动物疫病预防控制中心、中国农业科学研究院北京畜牧兽医研究所、中国农业科学院特产研究所、江苏省农业科学院兽医研究所、南京农业大学动物医学院、吉林大学动物医学学院、四川农业大学动物医学院、广西大学动物科学技术学院、陕西省动物疫病预防控制中心、西北农林科技大学动物医学院。

本文件主要起草人: 孙尧、朱旭、郭怀乔、刘岭、上官美荣、孟春春、黄士新、杨德全、杨显超、秦彤、白雪、毕振威、周振雷、赵艳兵、曹永国、彭广能、贺常亮、陈樱、周华波、赵合平、冉红志、 王兴龙。

目录

1	氾围		. 1
2	规范	性引用文件	. 1
3	术语	和定义	. 1
4	技术	要求	. 4
	4.1	外观	. 4
	4.2	核酸提取	. 4
		4.2.1 加样准确性及重复性	. 4
		4.2.2 提取模块温度控制	. 4
		4.2.3 表面磁通密度	. 5
		4.2.4 磁珠残留	. 5
		4.2.5 核酸污染率	. 5
		4.2.6 核酸提取的一致性	. 5
	4.3	核酸扩增	. 5
		4.3.1 扩增模块升温速率	. 5
		4.3.2 扩增模块降温速率	. 5
		4.3.3 扩增模块控温精度	. 5
		4.3.4 扩增模块温度准确度	. 5
		4.3.5 扩增模块温度均匀性	. 6
		4.3.6 扩增模块温度持续时间准确度	. 6
	4.4	荧光强度检测	. 6
		4.4.1 荧光强度检测重复性	. 6
		4.4.2 荧光强度检测精密度	. 6
	4.5	不同通道荧光干扰	. 6
	4.6	样本检测重复性	. 6
	4.7	线性	. 6
		4.7.1 样本线性	. 6
		4.7.2 荧光线性	. 6
	4.8	电气安全要求	. 6
	4.9	电磁兼容性要求	. 7
	4.10) 环境试验要求	. 7
5	试验:	方法	. 7
	5.1	正常工作条件	. 7
	5.2	外观	. 7
	5.3	核酸提取	. 7
		5.3.1 加样准确性及重复性	. 7
		5.3.2 提取模块温度控制	. 8
		5.3.3 表面磁通密度	. 9
		5.3.4 磁珠残留	. 9
		5.3.5 核酸污染率	10
		5.3.6 核酸提取的一致性	10
	5.4	核酸扩增	
		5.4.1 扩增模块升温速率	10

		5.4.2 扩增模块降温速率	11
		5.4.3 扩增模块控温精度	. 12
		5.4.4 扩增模块温度准确度	. 12
		5.4.5 扩增模块温度均匀性	13
		5.4.6 扩增模块温度持续时间准确度	13
	5.5	荧光强度检测	13
		5.5.1 荧光强度检测重复性	13
		5.5.2 荧光强度检测精密度	14
	5.6	不同通道荧光干扰	. 14
	5.7	样本检测重复性	. 14
	5.8	线性	. 15
		5.8.1 样本线性	. 15
		5.8.2 荧光线性	. 15
	5.9	电气安全试验	. 15
	5.10	电磁兼容性试验	. 15
	5.11	环境试验	. 15
6	标识、	、标签和使用说明书	. 15
	6.1	仪器铭牌	. 15
	6.2	包装箱标识、标签	15
	6.3	使用说明书	16
7	包装、	、运输和贮存	. 16
	7.1	包装	. 16
	7.2	运输	16
	7.3	贮存	. 16
附表	录 A		. 17
参	考 文	:献	18

动物全自动核酸检测系统

1 范围

本标准规定了动物全自动核酸检测系统(以下简称"检测系统")的术语和定义,规定了要求、标识、标签和使用说明书、包装、运输和和储存等内容。

本标准适用于集磁珠法或柱膜法等核酸的提取、纯化技术和实时荧光 PCR 技术于一体的检测系统,实现对动物核酸样本的提取、扩增、检测、分析。

本标准不适用于"一步法^{注1}"、"半自动^{注2}"的检测系统。

注 1: 一步法是指, 未经过核酸的提取、纯化, 直接进行核酸扩增;

注 2: 半自动是指,检测系统的某些步骤实现了机械化,其他步骤仍需操作者参与。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件其最新版本(括所有的修改单)适用于本文件。

GB/T191 包装储运图示标志

GB 4793.1 测量、控制和实验室用电气设备的安全要求 第1部分:通用要求

GB 4793.6 测量、控制和实验室用电气设备的安全要求 第 6 部分:实验室用材料加热设备的特殊要求

GB/T 42125.14 测量、控制和实验室用电气设备的安全要求第 14 部分:实验室用分析和其他目的自动和半自动设备的特殊要求

GB/T 9969 工业产品使用说明书 总则

GB/T 14710 医用电气环境要求及试验方法

GB/T 18268.1 测量、控制和实验室用的电设备 电磁兼容性要求 第1部分:通用要求

YY/T 0466.1 医疗器械 用于医疗器械标签、标记和提供信息的符号 第1部分:通用要求

3 术语和定义

下列术语和定义适用于文件。

3.1

全自动核酸检测系统

实现核酸提取和纯化、体系构建、基因扩增和检测全流程自动化的核酸检测系统。

3.2

核酸提取和纯化

包含样本裂解释放核酸核酸被结合进行洗涤、纯化和洗脱的过程。

3.3

聚合酶链反应 polymerase chain reaction, PCR

聚合酶链反应或多聚酶链反应是一种对特定的 DNA 或 RNA 片段在体外进行扩增的方法,由变性一退火一延伸三个基本反应步骤构成。

3.4

等温扩增技术 Isothermal Amplification Technology, ITA

等温扩增技术,其反应过程始终维持在恒定的温度下,通过添加不同活性的酶和各自特异性引物来达到快速核酸扩增的目的。

3.5

表面磁通密度 surface magnetic flux-density

也称磁感应强度的,表示垂直穿过单位面积的磁力线的疏密程度。

3.6

提取模块温度均匀性 uniformity of extraction module

特指,核酸提取温控模块对应的样本孔之间的温度一致性。

3.7

平均升温速率 mean heating rate

升温过程中模块单位时间内上升的平均温度度数。

3.8

扩增模块最大升温速率 maximum heating rate of amplification module

特指,在核酸扩增升温过程中,温控模块单位时间上升的最大温度度数。

3.9

扩增模块最大降温速率 maximum cooling rate of amplification module

特指,在核酸扩增降温过程中,温控模块单位时间下降的最大温度度数。

3.10

扩增模块平均降温速率 mean cooling rate of amplification module

特指,在核酸扩增降温过程中,温控模块单位时间内下降的平均温度度数。

3.11

扩增模块模块控温精度 consistency of amplification module

特指,在核酸扩增,一个循环中,恒温计时开始 10 s 内到计时结束之间数据采集仪所记录的最高温度,与数据采集仪所记录的最低温度差值的一半。

3.12

扩增模块温度准确度 accuracy of amplification module

特指,在核酸扩增,一个循环中,恒温计时开始 10s 内到计时结束之间,每间隔一定的时间数据 采集仪所记录温度的平均值与模块设置温度差值的绝对值。

3.13

扩增模块温度均匀性 uniformity of amplification module

特指,核酸扩增温控模块对应的样本孔之间的温度一致性。

3.14

扩增模块温度持续时间准确度 duration accuracy of amplification module

特指,核酸扩增温控模块设定恒温时间与数据采集仪所记录恒温(符合温度显示准确度要求时即 认为恒温)时间差值的绝对值。

3.15

荧光素 fluorochrome

由短波长激发光激发,释放出可见光的试剂。

示例: 常见的荧光素有 SYBR Green、FAM、HEX、Texas Red、VIC、Cy3、ROX、Cy5 等。

3.16

荧光强度检测重复性 repeatibility of fluorescent intensity

对同一检测孔在同一荧光条件下重复荧光强度检测,其检测值的一致性。

3.17

荧光强度检测精密度 precision of fluorescent intensity

对多个检测孔在同一荧光条件下重复荧光强度检测,其检测值的一致性。

3.18

阈值循环数 Ct (Cp) cycle threshold, crossing point

实时监测扩增过程中,反应管内的荧光信号到达指数扩增时经历的循环周期数。主要的计算方式 是以扩增过程前 3~15 个循的荧光值的 10 倍标准差为阈值,当荧光值超过阈值时的循环数则为阈值循

4 技术要求

4.1 外观

- 4.1.1 仪器表面应整洁,不应有明显划痕、锈蚀、及机械损伤;
- 4.1.2 开关、按键应灵活、可靠,紧固件应牢固可靠,不得有松动;
- 4.1.3 运动部件应平稳,不应卡住、突跳及显著空回,键组回跳应灵活;
- 4.1.4 图形符号和文字应准确、清晰均不得有划痕,应注明危险提示标示,如紫外、加热、生物危害、机械伤害等;

4.2 核酸提取

4.2.1 加样准确性及重复性

对具有加样功能的核酸提取模块进行检测,根据表 1 选择不少于 3 种体积的加样量,应符合准确性和重复性要求。

加样范围	准确性 E,	重复性 CV,		
μL	%	%		
≤10	≤±10	€5		
11~50	≤±8	€5		
51~200	≤±5	€2		
>200	≤ ±2	€1		

表 1 加样准确性及重复性要求

注: 参照附录 A 转换纯水体积和质量数据。

4.2.2 提取模块温度控制

具有温度控制功能的核酸提取模块的温度准确性、温度均匀性和平均升温速率均应符合如下要求:

- a) 温度准确性不大于 5℃;
- b) 温度均匀性不大于 6℃;
- c) 制造商应规定平均升温速率的要求。

4.2.3 表面磁通密度

检测系统的核酸提取模块配备有磁吸装置的,制造商应规定磁棒或磁力架的表面磁通密度要求。

4.2.4 磁珠残留

采用磁珠法核酸提取程序的,磁珠在不同试剂孔位移动后,孔位中不应有明显可见的残留。

4.2.5 核酸污染率

阴性样品的提取检测结果不得出现阳性。

4.2.6 核酸提取的一致性

选用同一均匀的高、中、低三种浓度阳性样本的提取结果应符合 CV 值不大于 15%。 样本浓度应符合如下要求:

- 4.2.6.1 高浓度不低于中浓度 10 倍;
- 4.2.6.2 中浓度不低于低浓度 10 倍。

4.3 核酸扩增

4.3.1 扩增模块升温速率

应符合 a) 和 b) 的要求:

- a) 平均升温速率,从 50°C~90°C,应不小于 1.5°C/s;
- b) 最大升温速率,从 50°C~90°C,应不小于 2.5°C/s。

4.3.2 扩增模块降温速率

应符合 a) 和 b) 的要求:

- a) 平均降温速率, 从 90°C~50°C, 应不小于 1.5°C/s;
- b) 最大降温速率, 从 90°C~50°C, 应不小于 2.0°C/s。

4.3.3 扩增模块控温精度

应不大于 0.5℃。

4.3.4 扩增模块温度准确度

测定值与设置温度差值应不大于±0.5℃。

4.3.5 扩增模块温度均匀性

温度差值应在1℃范围内。

4.3.6 扩增模块温度持续时间准确度

温度持续时间与编制温度时间的相对偏差在±5%范围内。

4.4 荧光强度检测

4.4.1 荧光强度检测重复性

在仪器测定范围内,用高、中、低浓度每种校准染料重复检测,其变异系数(CV,%)应不大3%。

4.4.2 荧光强度检测精密度

在仪器测定范围内,用高、中、低浓度每种校准染料进行检测,其变异系数(CV,%)应不大于5%。

4.5 不同通道荧光干扰

其他通道荧光检测强度不高于目标通道荧光阈值。

4.6 样本检测重复性

对高、中、低浓度样本进行检测,检测所得 Ct 值(或者浓度对数值)的 CV 不大于 3%。

4.7 线性

4.7.1 样本线性

对系列稀释梯度浓度的样本(不少于 5 个浓度梯度)进行检测,各浓度 Ct 值与浓度对数值的线性 回归系数 r 绝对值应不低于 0.980。

4.7.2 荧光线性

对系列稀释荧光染料物质的样本(不少于 5 个浓度梯度)进行检测,各浓度荧光测定值与稀释比例的线性回归系数 r 应不低于 0.990。

4.8 电气安全要求

应符合 GB 4793.1、GB 4793.6、GB/T 42125.14 中适用条款的规定。

4.9 电磁兼容性要求

应符合 GB/T 18268.1 和 GB/T 18268.26 中适用条款的规定。

4.10 环境试验要求

应符合 GB/T 14710-2009 中适用条款的规定。

5 试验方法

5.1 正常工作条件

a) 电源电压: 220 V ± 22 V, 50 Hz ± 1Hz。

b) 环境温度: 10°C~30°C

c) 相对湿度: 20% R H~80% R H

d) 大气压力: 85.0 kPa~106.0kPa。

注: a)~d)中的条件与企业产品标称不一致时,以企业产品标称为准,但需经相应环境试验验证。

5.2 外观

在自然光下,观察设备外观,应符合4.1的要求。

5.3 核酸提取

5.3.1 加样准确性及重复性

采用称重法进行检测,操作方法如下:

- a) 使用脱气纯水进行试验;
- b) 将仪器、纯水等置于恒温、恒湿的实验室内平衡 2 小时后开始实验。准备与仪器适配的容器, 在分度值为 0.1mg 的电子天平上调零,去除容器空白质量;
- c) 将容器放置于仪器的移液目标位置,控制移液器向容器内移取规定量纯水,在电子天平上称量其质量 M 测试. i;
- d) 每种规定移液量,重复称量 10 次。按公式(1)计算每次的实际加入量 V 测试. i,按公式(2)计算每种加入量的移液相对偏差 E,按公式(3)计算每种规定量移液的变异系数 CV,结果应符合 4.2.1 的要求。

$$V_{\text{mix}_i} = \frac{M_{\text{mix}_i}}{\rho}$$
 (1)

式中:

V 测试; ——实际加入量;

M 测试;——实际测定质量;

ρ——测定温度条件下的脱气纯水密度, 见附录 A。

$$E = \frac{\overline{V}_{\text{Mid}} - V_{\text{Mie}}}{V_{\text{Mie}}} \times 100\%$$
 (2)

式中:

E ——移液相对偏差;

 \overline{V}_{MK} ——实际加样量的算数平均值;

 $V_{\text{M定}}$ ——加样量设定值。

$$CV = \frac{\sqrt{\frac{\sum_{i=1}^{n} (V_{\text{Mid}i} - \overline{V}_{\text{Mid}})^{2}}{\frac{n-1}{\overline{V}_{\text{Mid}i}}}}}$$
(3)

式中:

CV——变异系数;

n ——加样量测试重复次数;

i——测定次数编号, *i*=1, 2, ...10;

 $V_{Mid,i}$ ——实际加入量;

 $\stackrel{-}{V}_{\scriptscriptstyle{Mil}}$ —实际加样量的算数平均值。

5.3.2 提取模块温度控制

根据生产企业提供的操作方法,编辑并运行一个温度循环的文件。将温度传感器的感温头外涂上适量导热介质(例:矿物油或导热硅脂等),将温度传感器的感温头放入模块的测试孔中,另一端连接数据采集仪。开启数据采集仪,将核酸提取温控模块温度设定在目标温度,待显示温度达到设定温度值恒温 10s 后,采集数据。检测孔应在仪器中均匀分布,当核酸提取温控模块少于8孔,至少布置2个测试点;当仪器有8孔或以上,至少布置5个测试点。

运行编辑的文件,显示温度到达设定温度,恒温 10s 后,计时 60s,每 10s 记录一次温度为 $T_i(i=1, 2...6)$,按照公式(4)计算温度准确性,结果应符合 4.2.2 a)的要求;记录测试点的最高温度和最低温度,按照公式(5)计算温度均匀性,结果应符合 4.2.2 b)的要求;设置温控模块从设定温度 T_I 升高至 T_2 目标温度,测试记录温控模块从 T_I 升至 T_2 ± 0.5 °C的时间 t,按照公式(6)计算平均升温速率,结果应符合 4.2.2 c)的要求。

$$\triangle T \# \hat{m} \# = T_i - T_s \tag{4}$$

式中:

 $\Delta T_{\#mt}$ —— T_i 值与设定温度 T_s 的差值;

 T_i ——每 10s 记录一次的温度 (i=1, 2...6);

T。——设定的温度。

$$\triangle T \text{ bist} = T_{max} - T_{min} \tag{5}$$

式中:

 ΔT 均匀性 ——测试点的最高温度和最低温度的差值;

 T_{max} ——每 10s 记录一次的温度 (i=1, 2...6) 中的最高温度;

 T_{min} — 每 10s 记录一次的温度(i=1, 2...6)中的最低温度。

$$V_{f \mid M} = \frac{T_B - T_A}{t} \tag{6}$$

式中:

 $V_{\mathcal{H}_M}$ ——平均升温速率;

 T_A ——设定温度;

 T_B ——目标温度;

t ——从 T_A 到达 T_B 的时间。

5.3.3 表面磁通密度

若适用,测量工作磁极的表面磁通密度,判定结果是否符合 4.2.3 的要求.

注:使用高斯计或特斯拉计,对磁棒端面或磁力架表面进行测量,测量时,合理放置特斯拉计的传感器前端的霍尔元件,令传感器紧贴被测表面,同时被测磁场的磁力线垂直穿过霍尔元件。

5.3.4 磁珠残留

准备检测系统配套核酸提取或纯化试剂盒及相应的耗材,按照试剂盒配套程序运行,磁珠在洗脱步骤后,取出适配耗材,离心或磁吸附后,目视适配耗材中,应符合4.2.4要求。

5.3.5 核酸污染率

准备检测系统配套核酸提取或纯化试剂盒及相应的耗材,将高浓度阳性样本和阴性样本进行间隔排列加入适配耗材中,按照试剂盒配套程序运行。将提取完成的阴性样本核酸溶液使用适配的 PCR 检测试剂盒进行测试,结果符合 4.2.5 要求。

注: 高浓度样本为检测靶标 Ct 值小于 25 的样本。

5.3.6 核酸提取的一致性

准备检测系统配套核酸提取或纯化试剂盒及相应的耗材,将同一高、中、低浓度阳性样本照试剂 盒配套程序运行,若是单孔不少于 3 次重复,若是多孔不少于 10 次重复,完成核酸提取步骤,结果应 符合 4.2.6 要求:

- a) 提取完成的核酸, 若是动物组织样本, 使用紫外分光光度计测量浓度;
- b) 提取完成的核酸, 若是病原体, 应使用配套 PCR 试剂, 计算 Ct 值;

5.4 核酸扩增

5.4.1 扩增模块升温速率

5.4.1.1 测温程序编辑

根据生产企业提供的操作方法,编辑并运行一个在 45℃(恒温 2 min)和 95℃(恒温 2 min)之间循环的文件。将温度传感器的感温头外涂上适量导热介质(例:矿物油或导热硅脂等),放入模块的测试孔(该孔应尽量靠近仪器内部传感器)中,另一端连接数据采集仪。开启数据采集仪,确认仪器工作正常,运行编辑的文件,用数据采集仪记录仪器显示温度到达设定温度,恒温 10s 后至恒温结束这段时间内的温度变化。

5.4.1.2 扩增模块平均升温速率

取 50°C±0.5°C范围内一温度点,温度记为 TA,取 90°C±0.5°C 范围内一温度点,温度记为 TB ,从 TA 到达 TB 的时间记为 t ,按照公式(7) 计算平均升温速率,结果应符合 4.3.1a)的要求。

$$V_{\mathcal{H}M} = \frac{T_B - T_A}{t} \tag{7}$$

式中:

 V_{HM} ——平均升温速率;

 $T_{\rm R}$ ——90°C ±0.5°C 范围内任一温度点;

*T*_A——50℃ ±0.5℃ 范围内任一温度点;

 $t \longrightarrow T_A$ 到达 T_B 的时间。

注: 当核酸扩增模块采用等温扩增技术的,则此指标不适用。

5.4.1.3 扩增模块最大升温速率

设置温度采集时间间隔为 $\triangle t$, $\triangle t$ \leq 1s 并尽可能足够小,扫描温度从 50°C±0.5°C升至 90°C±0.5°C 过程中的瞬时最大温度变化($\triangle T_{\rm max}$),按照公式(8)计算最大升温速率,结果应符合 4.3.1b)的要求。

$$V_{\mathcal{H}max} = \frac{\Delta T_{max}}{\Delta t} \tag{8}$$

式中:

 $V_{\text{H max}}$ ——最大升温速率;

 ΔT_{max} ——温度从 50℃±0.5℃升至 90℃±0.5℃ 过程中的瞬时最大温度变化;

△t ——温度采集时间间隔。

注: 当核酸扩增模块采用等温扩增技术的,则此指标不适用。

5.4.2 扩增模块降温速率

5.4.2.1 测温程序编辑

根据生产企业提供的操作方法,编辑并运行一个在 45℃(恒温 2 min)和 95℃(恒温 2 min)之间循环的文件。将温度传感器的感温头外涂上适量导热介质(例:矿物油或导热硅脂等),放入模块的测试孔(该孔应尽量靠近仪器内部传感器)中,另一端连接数据采集仪。开启数据采集仪,确认仪器工作正常,运行编辑的文件,用数据采集仪记录仪器显示温度到达设定温度,恒温 10s 后至恒温结束这段时间内的温度变化。

5.4.2.2 扩增模块平均降温速率

取 90°C±0.5°C范围内一温度点,温度记为 T_A ,取 50°C±0.5°C 范围内一温度点,温度记为 T_B , 从 T_A 到达 T_B 的时间记为 t ,按照公式(9) 计算平均升温速率,结果应符合 4.3.2a)的要求。

$$V_{\beta M} = \frac{T_B - T_A}{t} \tag{9}$$

式中:

V №M ——平均降温速率;

*T*_B——50℃ ±0.5℃ 范围内任一温度点;

 T_A ——90℃ ±0.5℃ 范围内任一温度点;

 $t = T_A$ 到达 T_B 的时间。

注: 当核酸扩增模块采用等温扩增技术的,则此指标不适用。

5.4.2.3 扩增模块最大降温速率

设置温度采集时间间隔为 $\triangle t$, $\triangle t$ \leq 1s 并尽可能足够小,扫描温度从 90°C±0.5°C升至 50°C±0.5°C 过程中的瞬时最大温度变化($\triangle T_{\max}$),按照公式(10)计算最大升温速率,结果应符合 4.3.2b)的要求。

$$V_{\beta \not=M} = \frac{T_B - T_A}{t} \tag{10}$$

式中:

V™max——最大降温速率;

 ΔT_{max} ——温度从 90°C±0.5°C升至 50°C±0.5°C 过程中的瞬时最大温度变化;

△t——温度采集时间间隔。

注: 当核酸扩增模块采用等温扩增技术的,则此指标不适用。

5.4.3 扩增模块控温精度

根据生产企业提供的操作方法,编辑并运行一个温度循环文件,在 55° C± 5° C、 72° C± 5° C、 95° C± 5° C 范围内各取一个温度点,设置恒温 2min,循环次数为 5 次。将温度传感器的感温头外涂上适量导热介质(例: 矿物油或导热硅脂等),放入模块的测试孔(该孔应尽量靠近仪器内部传感器)中,另一端连接数据采集仪。开启数据采集仪,确认仪器工作正常,运行编辑的文件,显示温度到达设定温度恒温 10s 后,计时 30s,记录最高温度和最低温度,二者的差值的一半为 ΔT_i 。连续记录 5 个循环, ΔT_i (i=1,2...5)的最大值应符合 4.3.3 的要求。

5.4.4 扩增模块温度准确度

根据生产企业提供的操作方法,编辑并运行一个温度循环文件,在 55° C± 5° C、 72° C± 5° C、 95° C± 5° C 范围内各取一个温度点,设置恒温 2min,循环次数为 5 次。将温度传感器的感温头外涂上适量导热介质(例:矿物油或导热硅脂等),放入模块的测试孔(该孔应尽量靠近仪器内部传感器)中,另一端连接数据采集仪。开启数据采集仪,确认仪器工作正常,运行编辑的文件,显示温度到达设定温度恒温 10s 后,计时 60s,每 10s 记录一次温度为 T_i (i=1, 2, ...6),其平均值 T_m 与设定温度的差值应符合 4.3.4 的要求。

5.4.5 扩增模块温度均匀性

根据生产企业提供的操作方法,编辑并运行一个温度循环文件,在 55° C± 5° C、 72° C± 5° C、 95° C± 5° C 范围内各取一个温度点,设置恒温 2min,循环次数为 5 次。将温度传感器的感温头外涂上适量导热介质(例:矿物油或导热硅脂等),放入模块的测试孔(该孔应尽量靠近仪器内部传感器)中,另一端连接数据采集仪。开启数据采集仪,确认仪器工作正常,运行编辑的文件,显示温度到达设定温度恒温 10s 后,计时 60s,记录温度为 T_i (i=1, 2, ...n),在模块上随机或者均匀选取 n 个孔位,取 T_i 最大值与最小值,计算各孔位的温度差值 ΔT_i 结果应符合 4.3.5 的要求。

- a) 当核酸扩增温控模块仅1个孔位,则此指标不适用:
- b) 当核酸扩增温控模块孔位 n (n <6) 个孔位,则至少选择 2 个孔位;
- c) 当核酸扩增温控模块孔位 n ($n \ge 6$) 个孔位,则至少选择 6 个孔位。

5.4.6 扩增模块温度持续时间准确度

根据生产企业提供的操作方法,编辑并运行一个在 45°C(恒温时间记为 t, $t \ge 60$ s)和 95°C(恒温时间记为 t, $t \ge 60$ s)之间循环的文件。将温度传感器的感温头外涂上适量导热介质(例:矿物油或导热硅脂等),放入模块的测试孔(该孔应尽量靠近仪器内部传感器)中,另一端连接数据采集仪。开启数据采集仪,确认仪器工作正常,运行编辑的文件,以 95°C±0.5°C 为计时参考点,自显示温度首次到达计时参考点,计时开始,至末次到达计时参考点结束,记录时间为 t_i (i=1, 2, ...5),连续记录5个循环,按公式(11)计算相对偏差,结果应符合 4.3.6 的要求。

相对偏差= $(t_{\rm m}-t)/t \times 100\%$

式中:

 t_m —5 个循环记录时间的平均值;

t——编制的恒温时间。

5.5 荧光强度检测

5.5.1 荧光强度检测重复性

在仪器测定范围内,随机选取 n $(n\geq 1)$ 个通道,分别加入配置好的高,中,低浓度的荧光染料(荧光素 25 μ L,液面最上层加入 20 μ L 石蜡油),重复检测 10 次,光学采集目标通道的荧光值。

分别计算高、中、低各浓度荧光染料测结果的平均值 M 和标准差 SD,根据公式(12)计算得出变异系数 CV,结果均应符合 4.4.1 的要求。

 $CV = SD / M \times 100\% \tag{12}$

式中:

CV ——变异系数;

SD ——标准差;

M ——测量结果的平均值。

5.5.2 荧光强度检测精密度

在仪器测定范围内,随机选取 n ($n \ge 1$) 个通道,随机选取 m 个检测孔。分别配制各通道的校准荧

光染料溶液进行检测,高,中,低浓度每种校准染料检测 1 次,光学系统收集目标通道的数据。分别计算各浓度校准染料测量结果的平均值 M 和标准差 SD,根据公式(12)计算得出变异系数 CV,结果均应符合 4.4.2 的要求。

- a) 当核酸扩增模块仅1个孔位,则此指标不适用;
- b) 当核酸扩增模块孔位 n (n<10) 个孔位,则至少选择 2 个孔位;
- c) 当核酸扩增模块孔位 n (n≥10) 个孔位,则至少选择 10 个孔位。

5.6 不同通道荧光干扰

- **5.6.1** 随机选取 n $(n \ge 2)$ 个通道进行检测,分别配制非目标通道的荧光染料溶液,光学系统收集所有通道的数据,结果应符合 4.5 的要求
- **5.6.2** 软件具有通道荧光串扰修正功能或颜色补偿功能的,在修正后或补偿后,结果应符合 4.5 的要求。

5.7 样本检测重复性

选用生产企业规定的试剂盒对高、中低浓度核样本进行检测,每一浓度重复检测 10 孔, 计算其 Ct 值(或浓度对数值)的平均值 M 和标准差 SD, 根据公式(12)得出变异系数 CV, 结果均应符合 4.6 的要求。

5.8 线性

5.8.1 样本线性

将已知浓度核酸样本按照 10 倍或 5 倍数梯度稀释后(至少稀释 5 个梯度),按测试项目选用对应的试剂进行检测,每一浓度梯度平行测试 3 孔,取 Ct 均值与浓度对数值均值计算线性相关系数 r,结果应符合 4.7.1 的要求。

5.8.2 荧光线性

将已知浓度标准荧光染料梯度稀释后(至少稀释 5 个梯度),每一浓度梯度平行测试 3 孔,取稀释比例与荧光测定均值计算线性相关系数 r,结果应符合 4.7.2 的要求。

5.9 电气安全试验

安全试验方法应符合 GB 4793.1、GB 4793.6、GB/T 42125.14 中适用条款的规定。

5.10 电磁兼容性试验

电磁兼容试验方法应符合 GB/T 18268.1 中适用条款的规定。

5.11 环境试验

环境试验方法应符合 GB/T 14710 中适用条款的规定。

6 标识、标签和使用说明书

6.1 仪器铭牌

应至少有下列内容:

- a) 产品名称、型号;
- b) 企业名称、生产地址、联系方式;
- c) 电源连接条件、输入功率;
- d) 生产日期或产品序列号。
- e) 提供产品信息的标签符号,且标签符号应符合 YY/T 0466.1 的要求。

6.2 包装箱标识、标签

应至少有下列内容:

- a) 产品名称、型号;
- b) 企业名称、生产地址、联系方式;
- c) 电源连接条件、输入功率;
- d) 生产日期或产品序列号;
- e) 净重、毛重、体积(长×宽×高);
- f) 贮运条件(如温湿度);
- g) 储运图示符合 GB/T191 的规定。

6.3 使用说明书

仪器使用说明书应符合 GB/T 9969 的要求。

7 包装、运输和贮存

7.1 包装

仪器包装应满足以下要求:

- a) 外包装(箱)上的标识符号应符合 GB/T 191 的规定;
- b) 包装应能保证产品免受自然和机械性损坏;
- c) 包装(箱)内应附有使用说明书、装箱清单及产品检验合格证。

7.2 运输

按照生产企业规定的要求进行运输。

7.3 贮存

按照生产企业规定的要求。

附录 A

标准大气压下不同温度时纯水的密度

单位为千克每立方米

									单位为千克	已母丑万木
°C	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	999.840	999.846	999.853	999.859	999.865	999.871	999.877	999.883	999.888	999.893
1	999.898	999.904	999.908	999.913	999.917	999.921	999.925	999.929	999.933	999.937
2	999.940	999.943	999.946	999.949	999.952	999.954	999.956	999.959	999.961	999.962
3	999.964	999.966	999.967	999.968	999.969	999.970	999.971	999.971	999.972	999.972
4	999.972	999.972	999.972	999.971	999.971	999.970	999.969	999.968	999.967	999.965
5	999.964	999.962	999.960	999.958	999.956	999.954	999.951	999.949	999.946	999.943
6	999.940	999.937	999.934	999.930	999.926	999.923	999.919	999.915	999.910	999.906
7	999.901	999.897	999.892	999.887	999.882	999.877	999.871	999.866	999.880	999.854
8	999.848	999.842	999.836	999.829	999.823	999.816	999.809	999.802	999.795	999.788
9	999.781	999.773	999.765	999.758	999.750	999.742	999.734	999.725	999.717	999.708
10	999.699	999.691	999.682	999.672	999.663	999.654	999.644	999.634	999.625	999.615
11	999.605	999.595	999.584	999.574	999.563	999.553	999.542	999.531	999.520	999.508
12	999.497	999.486	999.474	999.462	999.450	999.439	999.426	999.414	999.402	999.389
13	999.377	999.384	999.351	999.338	999.325	999.312	999.299	999.285	999.271	999.258
14	999.244	999.230	999.216	999.202	999.187	999.173	999.158	999.144	999.129	999.114
15	999.099	999.084	999.069	999.053	999.038	999.022	999.006	998.991	998.975	998.959
16	998.943	998.926	998.910	998.893	998.876	998.860	998.843	998.826	998.809	998.792
17	998.774	998.757	998.739	998.722	998.704	998.686	998.668	998.650	998.632	998.613
18	998.595	998.576	998.557	998.539	998.520	998.501	998.482	998.463	998.443	998.424
19	998.404	998.385	998.365	998.345	998.325	998.305	998.285	998.265	998.244	998.224
20	998.203	998.182	998.162	998.141	998.120	998.099	998.077	998.056	998.035	998.013
21	997.991	997.970	997.948	997.926	997.904	997.882	997.859	997.837	997.815	997.792
22	997.769	997.747	997.724	997.701	997.678	997.655	997.631	997.608	997.584	997.561
23	997.537	997.513	997.490	997.466	997.442	997.417	997.393	997.396	997.344	997.320
24	997.295	997.270	997.246	997.221	997.195	997.170	997.145	997.120	997.094	997.069
25	997.043	997.018	996.992	996.966	996.940	996.914	996.888	996.861	996.835	996.809
26	996.782	996.755	996.729	996.702	996.675	996.648	996.621	996.594	996.566	996.539
27	996.511	996.484	996.456	996.428	996.401	996.373	996.344	996.316	996.288	996.260
28	996.231	996.203	996.174	996.146	996.117	996.088	996.059	996.030	996.001	996.972
29	995.943	995.913	995.884	995.854	995.825	995.795	995.765	995.753	995.705	995.675
30	995.645	995.615	995.584	995.554	995.523	995.493	995.462	995.431	995.401	995.370
31	995.339	995.307	995.276	995.245	995.214	995.182	995.151	995.119	995.087	995.055
32	995.024	994.992	994.960	994.927	994.895	994.863	994.831	994.798	994.766	994.733
33	994.700	994.667	994.635	994.602	994.569	994.535	994.502	994.469	994.436	994.402
34	994.369	994.335	994.301	994.267	994.234	994.200	994.166	994.132	994.098	994.063
35	994.029	993.994	993.960	993.925	993.891	993.856	993.821	993.786	993.751	993.716
36	993.681	993.646	993.610	993.575	993.540	993.504	993.469	993.433	993.397	993.361
37	993.325	993.280	993.253	993.217	993.181	993.144	993.108	993.072	993.035	992.999
38	992.962	992.925	992.888	992.851	992.814	992.777	992.740	992.703	992.665	992.628
39	992.591	992.553	992.516	992.478	992.440	992.402	992.364	992.326	992.288	992.250
40	992.212	991.826	991.432	991.031	990.623	990.208	989.786	987.358	988.922	988.479
50	988.030	987.575	987.113	986.644	986.169	985.688	985.201	984.707	984.208	983.702
60	983.191	982.673	982.150	981.621	981.086	980.546	979.999	979.448	978.890	978.327
70	977.759	977.185	976.606	976.022	975.432	974.837	974.237	973.632	973.021	972.405
80	971.785	971.159	970.528	969.892	969.252	968.606	967.955	967.300	966.639	965.974
90	965.304	964.630	963.950	963.266	962.577	961.883	961.185	960.482	959.774	959.062
100	958.345									

参考文献

- [1] 《新型冠状病毒核酸全自动 PCR 检测系统临床应用江苏专家共识》江苏省医学会检验学分会, 江苏省临床检验中心发布
- [2] YY/T 1173-2010 聚合酶链反应分析仪
- [3] YY/T 1908-2023 核酸提取仪
